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1. Introduction

We detect two major information channels that explain variation in expected returns for

developed countries’ stock indices between 1975 and 2014. The first channel is associated

with local, country specific information based on both discount rate (DR) and cash-flow

(CF) news. The second one is a global channel determined primarily by discount rate news.

Both, local and global factors track a fraction of the variation in expected returns. Our

conjecture is that there exist components of a local discount rate and a global discount rate

for stock markets. The magnitude of the DR channel compared to the CF channel is closely

tied to return predictability. We decompose price to fundamental ratios’ variance into DR

and CF news innovations. While global ratios are determined by DR news almost exclu-

sively, for local ratios both DR and CF news is relevant. Interestingly, the CF component

in local ratios rises throughout our sample compared to the DR component. This incidence

goes hand in hand with less return predictability by local ratios. Importantly, this finding

is compensated by higher predictive power by global ratios suggesting an increasing role of

global factors for local stock indices. Global ratios correlate with the world business cycle

hinting on an existence of a global discount rate explained by for instance habits or long-run

risk across markets. Our results provide a possible explanation for the mixed international

evidence on (time-varying) return predictability, dividend growth predictability and param-

eter instability.

The article is organized as follows. Section 2 provides an overview on existent literature.

Section 3 tries to formalize the intuition of global and local DR and CF effects. Section 4

introduces data sources and data constructions. In Section 5 we show the main results from

predictive regressions, vector autoregressions (VAR) and Bayesian VARs. Section 6 tackles

robustness and Section 7 concludes.

2. Literature Review

In this section we outline the literature closely tied to our research question. We distin-

guish three major stream, (i) global return predictability and their instability, (ii) the origin

for predictability being cash-flow news or discount-rate news and (iii) global asset pricing

studies.

Time variation in expected returns has been tackled by researchers going back to the sem-

inal findings of Campbell and Shiller (1988a). On the international level one imminent ques-

tion is to which extend information from outside markets can be associated with local stock
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index returns. Interesting implications have findings in early attempts by Harvey (1991),

Campbell and Hamao (1992), Bekaert and Hodrick (1992), Solnik (1993) or Richards (1995).

These studies focus on the international evidence on return predictability and interlinkages

between countries. In particular, Campbell and Hamao (1992) test whether a US financial

ratio can predict Japanese returns. More recently, Rapach, Strauss, and Zhou (2013) find

evidence that lagged US returns predict returns in other countries. Related, Lawrenz and

Zorn (2016) find improvements in predictability by adding an indicator whether local price-

earnings ratios are consistent with global ratios, suggesting that global factors help forecast

country returns. This strand of literature motivates our approach in finding a local, country

specific factor and a global factor which tracks a fraction of expected returns.

Closely tied to a global factor are macroeconomic predictor variables. Rangvid (2006)

constructs a price to industrial production ratio tracking a larger fraction of expected returns

than price-earnings and price-dividend ratios. Cooper and Priestley (2009) find similar

predictive power using a measure of output gap (log of detrended industrial production). In

the global factor context, Cooper and Priestley (2013) define a (world) capital to output ratio

closely tied to the world business cycle. This variable tracks variation in expected returns

for a group of developed countries hinting on a global pattern for return predictability.

McMillan (2016) emphasizes the role of local and global (US) information for predictabil-

ity. He decomposes local and US components of dividend price ratios by orthogonalizing

them. This procedure makes estimation in a predictive regression easier since the likelihood

of multicollinearity between the variables vanishes. We build upon this approach but instead

of taking the US as the global factor we use a true global variable incorporated in the MSCI

World.

Our attempt also tries to strengthen the instability of return predictability on the interna-

tional level. Rangvid, Schmeling, and Schrimpf (2013) detect dividend growth predictability

as being the role rather than the exception in global equity markets, particularly for smaller,

less developed markets. Instability might also arise due to changes in the steady state of

predictor variables as noted by Lettau and Van Nieuwerburgh (2008) motivating regime

switching procedures as in Zhu (2015). Rapach, Strauss, and Zhou (2010) suggest using

forecast combinations to counter instability and thereby linking forecasts to the real econ-

omy. Our approach works in the same direction since we incorporate a global, business cycle

related factor in our analysis.

Another strand of literature closely tied to our research tries to assess the nature for

time-varying expected returns. Whether cash-flow (CF) or discount rate (DR) news influ-

ence expected returns is a fundamental question in the finance discipline. An early attempt

by Campbell (1991) prominently decomposes expected returns into CF and DR innovations.
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For the US, numerous studies employ this decomposition finding, by and large, that most

of the fluctuation in unexpected stock index returns can be associated with DR news.1

Cochrane (2011) in his presidential address makes the point for discount rates being the

solely driver for price-dividend variation. On an international scale, Ammer and Wongswan

(2007) stress the DR channel as being more pronounced on the global level whereas CF

news matters more on the local level. They emphasize common risk perception in inter-

national equity returns and international co-movement in risk premia. Vuolteenaho (2002)

decomposes returns both on the firm level and the aggregated level finding as well that lower

aggregated returns are driven largely by cash-flows whereas for portfolios discount rates are

more pronounced. They argue, “[t]his finding suggests that cash-flow information is largely

firm specific and that expected-return information is predominantly driven by systematic,

market-wide components”(Vuolteenaho, 2002, p.259). This evidence in particular motivates

us to infer whether discount rates are determined locally or globally or by a combination of

both factors.

Estimating CF and DR components is subject to instability depending vastly on the

specification as emphasized by Chen and Zhao (2009) or Engsted, Pedersen, and Tanggaard

(2012). To address such concerns we employ a Bayesian estimation technique for estimating

vector autoregressions (VARs) in the spirit of Hollifield, Koop, and Li (2003) and Balke, Ma,

and Wohar (2015).

The last strand of literature concerns global asset pricing. Is there a priced risk factor

structure across global equity markets? Early studies generally reject the hypothesis of a

common stochastic discount factor (SDF) (see e.g. Cumby (1990), Campbell and Hamao

(1992) or Bekaert and Hodrick (1992)). However, studies examining the factor pricing re-

lationships for returns by the world CAPM find support for a common pricing relationship

(Harvey (1991), Ferson and Harvey (1993)). Still, empirical tests for unconditional and con-

ditional versions of the world CAPM yield ambiguous results as shown by Dumas and Solnik

(1995) or Adler and Dumas (1983).

The existence of a global discount rate which prices local (country) equity markets is still

debated upon. As Lewis (2011) summarizes, although international traded assets continue

to depend strongly upon local risk factors, both domestic and global risk factors matter for

equity returns.

Why are discount rates varying? And to what extent are they determined locally or

globally? Several models try to explain variations in the market price of risk, including the

most prominent ones using habits (Campbell and Cochrane, 1999), long run risk (Bansal and

1See e.g.Campbell and Ammer (1993), Ammer and Mei (1996), Van Binsbergen and Koijen (2010) or
Koijen and Van Nieuwerburgh (2011).
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Yaron, 2004) or idiosyncratic risk (George M. Constantinides, 1996).2 Recently, Cochrane

(2016) stresses the commonalities between several examples of models that explain the vari-

ability of the market’s ability to bear risk. Although the models have very different (mi-

croeconomic) assumptions and underlying approaches it is quite striking that their state

variables correlate so much between each other. Importantly, these models all capture busi-

ness cycle correlated risk premia. It should not be surprising in this respect that given the

co-movements in international asset prices, particularly in recessions, discount rates also

share some co-movement.

3. Theoretical Framework

In this section we provide the theoretical motivation for the empirical tests where we combine

local and global factors as determinants for local (country index) returns.

The main workhorse in the return predictability literature is the Campbell and Shiller

(1988a,b) dynamic dividend discount model which links the (time-varying) dividend yield to

expected returns and dividend growth,

pt − dt = const.+ Et

[
∞∑
j=1

ρj−1(+∆dt+j − rt+j)

]
, (1)

where lower case letters denote logs and pt− dt is the price-dividend ratio, ∆dt the dividend

growth and rt the return. ρ is a number close to one, expp−d /(1 + expp−d). This accounting

identity is an approximation being accurate for ratios with variations not too large. Rational

bubbles are ruled out under the transversality condition that pt− dt does not explode faster

than ρ−t, limj→∞ ρ
j(pt+j + dt+j) = 0 (see e.g. Lewellen (2004) and Cochrane (2008)). The

interpretation of this identity is straightforward. High pd ratios must be followed by high

dividend growth ∆dt+j or low returns rt+j or a combination of both.

Assuming earnings being payed out entirely as dividends, this approximation works also

for pe ratios,3

pt − et = const.+ Et

[
∞∑
j=1

ρj−1(+∆et+j − rt+j)

]
, (2)

where dividends are substituted by earnings as the cash-flow proxy.

2See Cochrane (2016) for a summary of various models capturing time-varying risk aversion.
3Evidently, correctly specified we would need to account for the (log) payout ratio de = log(Dt/Et),

adding the term (1− ρ)det+j to ∆et+j (see e.g. Chen, Da, and Priestley 2012). However, we test proxies for
cash flows and compare their differences throughout the paper.
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It is even possible to relate a macroeconomic variable, industrial production, in this

identity. Motivated by the evidence of Lettau and Ludvigson (2001) that a consumption-

aggregate wealth ratio can track variation in expected returns, Rangvid (2006) relates a price

to GDP ratio to the Campbell and Shiller (1988a,b) identity. The key assumption for this

relation is that the non-stationary behavior of dividends is directly related to the output in

the economy dt = yt + νt where νt must be a stationary disturbance term. We can therefore

write for GDP output (industrial production) yt,

pt − yt = const.+ Et

[
∞∑
j=1

ρj−1(∆yt+j − rt+j)

]
. (3)

Again, the interpretation is similar as in Eq.(1) and (2), high pt − yt ratios correspond to

either high expected output growth in terms of industrial production or lower expected future

returns, or a combination of both.

Campbell (1991) provides a similar decomposition for unexpected returns. By moving

back one period the identity in Eq.(1) and taking innovations of both sides we obtain 0 =

(Et − Et−1)
∑∞

j=0 ρ
j(∆dt+j − rt+j). Pulling rj on the left side yields the unexpected return

decomposition,

rt − Et−1rt = (Et − Et−1)

[
∞∑
j=0

ρj∆dt+j −
∞∑
j=1

ρjrt+j

]
= NCF,t+j −NDR,t+j,

(4)

where NCF,t+j is the revision in expectations about current and future cash-flows. NDR,t+j

is the revision in expectations about future discount rates. Positive shocks to returns must

come from positive shocks to forecast cash-flow growth or from negative shocks to forecast

returns (discount rate), or a combination of both.

Our main innovation is, first, to generalize the decomposition for variables associated

with output (cash-flow related),

rt − Et−1rt = (Et − Et−1)

[
∞∑
j=0

ρj∆ot+j −
∞∑
j=1

ρjrt+j

]
, (5)

where o emphasizes the output (fundamentals) in the economy proxied by variables such as

(i) financial: dividends or earnings and (ii) macroeconomic: GDP or industrial production

ip.

Our second, essential, innovation is to tie local and global sources of news to local returns.
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Note that changes in output ∆o can be decomposed into a global and a local component,

∆o = ∆oglobal + ∆olocal + ν. (6)

Now substitute Eq.(6) into Eq.(5) to obtain a generalized return decomposition,

rt − Et−1rt = (Et − Et−1)

[
∞∑
j=0

ρj∆oglobalt+j −
∞∑
j=1

ρjrglobalt+j

]

+ (Et − Et−1)

[
∞∑
j=0

ρj∆olocalt+j −
∞∑
j=1

ρjrlocalt+j

] (7)

This identity implies that variation in unexpected returns must come from combinations of

global and local cash-flow and discount rate news. However, the identity may not hold due

to non-linearities between local and global discount rate components. Keeping this in mind

for the subsequent analysis we formalize the relationship even more general,

rt − Et−1rt = f [N global
CF,t+j, N

global
DR,t+j, N

local
CF,t+j, N

local
DR,t+j], (8)

where f denotes the unknown true relationship that ties unexpected returns to innovations

in local and global cash-flow and discount rate news.

To infer the magnitude of local and global cash-flow and discount rate news we decompose the

variance of price-dividend, price-earnings and price-industrial production ratios. Multiplying

both sides of Eq. (1) by (pt − dt)− E(pt − dt) and taking expectations yields

V ar(xt) = −Cov

(
xt,Et

[
∞∑
j=1

ρj−1∆ot+j

])
+ Cov

(
xt,Et

[
∞∑
j=1

ρj−1rt+j

])
, (9)

where we replace (pt − dt) by xt denoting any price p to fundamental o ratio.

Following our generalization in Eq.(7) we can do a variance decomposition including global
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and local information for horizon k. For the global ratio we get

V ar(xglobalt ) =− Cov

(
xglobalt ,Et

[
k∑
j=1

ρj−1∆oglobalt+j

])
− Cov

(
xglobalt ,Et

[
k∑
j=1

ρj−1∆olocalt+j

])

+ Cov

(
xglobalt ,Et

[
k∑
j=1

ρj−1rt+j

])

+ Cov

(
xglobalt , xlocalt+k

)
+ Cov

(
xglobalt , xglobalt+k

) .

(10)

where the first line captures the covariance to global and local cash-flow news, the second line

captures global discount rate news and the third line captures autocovariance and covariance

with the local ratio. As k →∞ the last two terms should approach zero.

From an asset pricing view a time-varying stochastic discount factor (DR) can be mod-

eled, very general, following a power-utility consumption-based model as demonstrate by

Cochrane (2016),

DRt+1 = β

(
ct+1

ct

)−γ
Φt+1, (11)

with the first term emphasizing marginal consumption and risk aversion γ. The variable

Φt+1 varies over time with recessions and therefore is correlated with the business cycle.4

Since business cycles share some co-movement across countries, we emphasize also from an

asset pricing perspective the importance of a global and local component that determine the

variable Φt+1 which, in turn, affects DRt+1.

4. Data

We use monthly data for 11 developed countries including Austria, Belgium, Canada,

Denmark, France, Germany, Ireland, Japan, Netherlands, UK and US. The global ratios are

based on the MSCI World. Return indices, price indices, dividend yields and price-earnings

ratios are gathered from Datastream. Data for industrial production are from the OECD

database. Our sample reaches from 1985M1 to 2014M4 and all prices are in $US.5

To mitigate the possible multicollinearity problem between global and local ratios we

4Cochrane (2016) shows that most of the explanations, be it habits, long-run risk, recursive utility,
idiosyncratic risk or even behavioral views can be boiled down to a time-varying state variable Φt+1.

5Analogous to Ammer and Wongswan (2007) we find similar results when returns are measured in local
currencies.
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orthogonalize them following McMillan (2016),

xi = xG + ei, (12)

ei ≡ xL, (13)

where xi is the country specific predictor variable and xG is the global predictor variable. By

regressing xi’s on xG the residual is orthogonal to xG. We define this residual as the purely

local ratio xL (stacked vector). Through this procedure we achieve stable uncorrelated

predictor variables which we can combine in a predictive regression.

To construct the price to industrial production ratio (pip) we follow Rangvid (2006).

However, in order to make sure our subsequent analysis is not spurious, we detrend the ratio

using three distinct methods. First, in the benchmark case, we detrend the ratio linearly

with a trend t for each cross-section,

(pt − ipt−1) = α + βt+ ut. (14)

The second specification adds a quadratic term as in Cooper and Priestley (2009),

(pt − ipt−1) = α + βt+ γt2 + ut. (15)

In a third specification we use a Hodrick-Prescott filter (Hodrick and Prescott, 1997),

min
τ

(
T∑
t=1

((pt − ipt−1)− τt)2 + λ
T−1∑
t=2

[(τt+1 − τt)− (τt − τt−1)]2

)
, (16)

with a common smooth parameter for monthly data of λ=129600.

Table 1 shows the correlation matrix for all variables. Global ratios are all highly corre-

lated from 0.775 to 0.955 in absolute terms. For local ratios only dp and pe display a high

(negative) correlation of -0.792. As desired, the orthogonalization of local ratios yields very

low correlations to the global ratios.

[Insert Table 1 near here]
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5. Results

5.1. Predictive regressions

In this section we present results from univariate predictive regressions. In a pooled panel

approach we run the following equation for the sample of i countries,

ri,t+1 = αk +G′t βk + L′i,t γk + ui,t+1, (17)

where G = [dpG, peG, pipG]′ emphasizes a vector of lagged global predictor variables and

L = [dpL, peL, pipL]′ a vector of lagged local predictor variables. ri,t+1 denotes the one

period ahead return. All variables are in logs. By pooling variables we add additional cross-

sectional information and thus mitigate the endogeneity effect of the predictive variables.6

Panel Corrected Standard Errors (PCSE) computed from Seemingly Unrelated Regressions

(SUR) are used for inference (see e.g. Beck and Katz (1995) or Ang and Bekaert (2007)).

We choose these standard errors over the Newey and West (1987) methodology since they

are more conservative.

Table 2 highlights predictive regressions for various specifications including local and

global dp, pe and pip ratios. Column (i) shows the usual predictive regression including the

country specific dp ratio with a highly significant positive coefficient. This is in line with

the literature on in-sample tests. R2 is 0.13%. dp ratios do seem to forecast returns for

the 1 month ahead horizon. In column (ii) we now include the global ratio dpG and the

orthogonalized local ratio dpL. Interestingly, both components help to explain variation in

future returns on a similar magnitude. Adjusted R2 rises slightly to 0.155%. This finding

suggests that global factors help to explain variation in expected returns. Similar results

can be inferred for pe ratios as outlined in columns (iii) and (iv). While country specific

pe ratios do forecast future returns, the inclusion of the global factor enhances the forecast

ability with rising R2. However, the global factor is significant only at the 10% level. Results

for the pip ratio are even stronger as shown in columns (v) and (vi). R2 rises from 0.194%

to 0.252%. Columns (vii) and (viii) show combinations of different forecast variables. By

including dp and pe ratios in one regression, the global components do seem to dominate

in terms of magnitude and significance. Even more, adding all variables in a regression

increases R2 to 0.679%. Again the global components dominate in terms of significance

and magnitude of the coefficients. However, one should be cautious about inference due

6As noted by Hjalmarsson (2010), the pooled estimator is unbiased as long as no fixed effects are included.
As a (unreported) cross-check we estimated a fixed effects model finding no meaningful differences in the
results.
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to the high correlation of forecasting variables. dpL and peG change sign which might be

attributable to a multicollinearity problem in the regression. For this reason we focus on

estimations with orthogonal components only in the subsequent analysis.

[Insert Table 2 near here]

5.2. Vector Autoregressions

In this section we employ Vector Autoregressions (VARs) to infer interdependencies of

predictor variables, returns and output variables. We follow Campbell (1991) and decompose

the variance of variables of interest based on the extension in Eq.(10).

Consider a first order VAR with predictor variables x, output variables o, and returns r,

rt+1 = ar + brxt + εrt+1, (18)

∆ot+1 = ao + boxt + εot+1, (19)

xt+1 = ax + φx+ εxt+1, (20)

where ∆ is a backward difference operator. In parsimonious notation this reads[
Yt+1

Zt+1

]
= A+ Γ

[
Yt

Zt

]
+ εt+1, (21)

where we split the variables xt into a state vector Y which includes local return, cash-flow

and predictor variables and a state vector Z which includes global cash-flow and predictor

variables.

Due to potential multicollinearity between different predictor variables we choose to use

a model including dp, pe and pip separately. The setting for the dividend yield then reads

Y = [dpLt ,∆d
L
t , rt]

′ and Z = [dpGt ,∆d
G
t ]′. A is the intercept vector. Γ is the coefficient

matrix. The variance of the global dividend yield due to cash-flow is given by:

− Cov

(
dpGt ,Et

[
∞∑
j=1

ρj−1∆dLt+j

])
= −e′2Γ(I − ρΓ)−1 ΣY,Ze4 (22)

and

− Cov

(
dpGt ,Et

[
∞∑
j=1

ρj−1∆dGt+j

])
= −e′5Γ(I − ρΓ)−1 ΣY,Ze4 (23)

with the unconditional covariance matrix of Yt and Zt, ΣY,Z = devec[(I − Γ⊗ Γ)−1vec(Σ)].
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The variance due to discount rate news can be estimated by

Cov

(
dpGt ,Et

[
∞∑
j=1

ρj−1rt+j

])
= −e′3Γ(I − ρΓ)−1 ΣY,Ze4. (24)

As in Ammer and Wongswan (2007), we specifically do not include further variables such

as interest rates, yield spreads or exchange rates since those variables were not found to be

relevant for explaining expected return variation (see e.g. Campbell and Ammer (1993) or

Ammer and Mei (1996)).

Table 3 shows the estimation output for the first order VAR. In line with the univariate

results, both local and global dp ratios forecast returns. As expected dpL and dpG are highly

persistent with autocorrelations of 0.996 and 0.995 respectively. By and large these results

are similar to the US evidence reported in Campbell and Ammer (1993). However, we find

also significant predictability of (short term) dividend growth predictability.

To capture the influence of discount rate and cash-flow news on local and global variables

we decompose the variance implied by the VAR following Ammer and Wongswan (2007) and

Ang (2012) for ratios in particular. Table 4 shows the variance decomposition for each ratio

based on estimations from Eqs.(22 & 23) for cash-flows and Eq.(24) for discount rates. For

all global ratios most of the variance is due to discount rate innovations (first column).

For local ratios the picture is different. Both discount rate and local cash-flow innovations

influence local ratios. Particularly for dpL and peL cash-flow news is capturing more of

the variance, 47.47 versus 34.38 and 66.09 versus 25.46 respectively. For pipL, however,

the discount rate news channel seems more important in explaining variance. This might

be due to the macroeconomic nature of the variable and the proximity of output being

actual cash-flow. Global cash-flow components do not seem to influence ratios’ variance a

lot. The relatively high covariance terms between local and global ratios (columns 4 and

5) arise due to commonalities between the ratios themselves. Although local and global

components are orthogonalized, they still share a common pattern.7 Overall, the findings

suggest that global ratios fluctuate mainly due to DR news whereas local ratios fluctuate due

to CF and DR news. These findings are in line with evidence from Ammer and Wongswan

(2007) who detect a similar pattern for global and local components in returns. They note

that “results are broadly consistent with co-movement in future discount rates arising from

perceptions of common elements of risk in international equity markets” (p.211). Indeed,

our results point in a similar direction, since DR news determines the fluctuation of a global

7We ran the decomposition with local or global components alone finding no major differences with respect
to the DR and CF components. Also, unreported results from simulated data show that the orthogonalization
does not mechanically give rise to large covariance terms between the local and global term.
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ratio which subsequently predicts index returns. Considering the finding that DR news

determines both local and global ratios, we would argue for a local and global discount

rate partly responsible for the fluctuation of expected returns. CF news, on the contrary,

determines local ratios exclusively. This is in line with evidence from Vuolteenaho (2002)

who stresses the importance of CF news for firm level stock returns. The more stock returns

are aggregated CF news can be diversified away.

Figure 1 shows impulse response functions for local and global ratios following the

Cholesky decomposition.8 Similar to the variance decomposition the graphs on the left hand

side emphasize the response of local ratios to return and cash-flow news over ten periods

(months). Both channels trigger a response of the ratio. On the right hand side responses of

global ratios are depicted. Here mainly return (DR) news triggers a response of the ratios.

How does the variance decomposition look over time? Table 5 shows the variance de-

composition for subsamples including only DR and CF (global and local) covariance terms.

Percentage numbers are defined as variance proportions of combined DR and CF variance.

The first two columns summarize the finding of Table 4 for the whole sample period. For

global ratios subsamples show very similar decompositions as in the whole sample. DR news

dominates global ratios with an exception of pipG during the period 1975-1987 where CF

news accounts for 17% of variation. Local ratios are subject to more variability. Across all

local ratios, the relative importance of CF news does seem to rise in later periods. Particu-

larly for the subsample 2000-2014, CF news accounts for 82% and 85% of variation for local

dp and pe ratios. For pipL cash-flow news also rises in importance though the DR channel

still prevails with 70% in the last subsample.

We further test whether there is some kind of lead-lag relationship between global and

local ratios. As outlined in the variance decomposition the covariance terms between in-

novations in local (global) ratios and global (local) ones are relatively high in magnitude.

Since global ratios are defined by aggregated cash-flows from local ratios they are interde-

pendent. However, prices as the numerator (or denominator for dp) are determined both

by local and global influences. Table 6 shows Granger causality tests for local and global

ratios. For this purpose we use country specific ratios (not orthogonalized) in order to rule

out possible effects from the orthogonalization procedure.9 In the bottom panel we test pair-

wise Granger causality. Results are somewhat ambiguous. Where for dp ratios the Granger

causality goes from global to local, results for the other ratios are unclear. The same is

true for panel causality tests which test Granger causality homogeneously. Overall, the tests

8We employ the Cholesky ordering [r, xG, xL,∆oG,∆oL]. Importantly, results are robust to different
orderings, exchanging local with global counterparts.

9 Unreported tests using orthogonalized ratios yield virtually the same results.
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show a tendency towards better predictability of local ratios by global ones. This might be

a further hint on the importance of global factors in explaining expected returns locally and

the existence of a global discount rate.

[Insert Table 3 near here]

[Insert Table 4 near here]

[Insert Table 5 near here]

[Insert Table 6 near here]

[Insert Figure 1 near here]

5.3. Bayesian Vector Autoregressions

Motivated by possible parameter instability of DR and CF components as highlighted by

Chen and Zhao (2009) and inconclusive evidence in the literature we use a Bayesian Vector

Autoregression (BVAR). Although VARs are prominently used in the literature to capture

DR and CF components, several authors point to distinct weaknesses (see e.g. Engsted et al.

(2012)). One of it being biased classical estimates. BVARs make it possible to estimate

robust parameters through shrinkage towards a prior distribution of estimates. Also, one

can alter the prior specification to get an idea of the stability of estimates. For these reasons

we estimate the influence of DR and CF news in a BVAR in the spirit of Hollifield et al.

(2003) and Balke et al. (2015). Consider a stacked version of Eq. (21),

B = C Γ + U, U ∼MN (0,Σ⊗ I), (25)

where B includes global and local variables (Y and Z) at time t. C includes lagged global

and local variables (Y and Z) at t − 1. U follows a matrix Normal distribution. The OLS

estimates for location and dispersion are

Γ̂ = (C ′C)−1C ′B (26)

and

Σ̂ =
1

T
(B − CΓ̂)′(B − CΓ̂) (27)
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with Var(vec(Γ)) = Σ̂⊗ (C ′C)−1. The prior is modeled as normal-inverse-Wishart (NIW),

p1(Γ,Σ−1) = p(vec(Γ)) p(Σ−1), (28)

where

p(vec(Γ)) ∝ fk
2

N (vec(Γ0), D−1
0 ) I(Γ ∈ Ω), (29)

and

p(Σ−1) = fkW(v0, E
−1
0 ). (30)

fk
2

N is the k2-variate Normal pdf with prior mean vec(Γ0) and covariance matrix D−1
0 (propor-

tional to Σ−1). fkW is the k-dimensional Wishart pdf where I(Γ ∈ Ω) is an indicator function

for the region Ω. Without restriction on Γ, Ω = Rk×k. Γ0, D0, v0 and E0 are hyperparameters

to be specified for the prior distribution.

Combining the likelihood function of the VAR in Eq.(25) with the prior in Eqs. (28)-(30),

we obtain the joint posterior for Γ and Σ−1,

p(Γ,Σ−1|B,C) ∝ p1(Γ,Σ−1) · p(B|C,Γ,Σ−1). (31)

Consequently, the posterior can be decomposed into the conditional densities for vec(Γ)

and Σ−1, respectively

p(vec(Γ)|B,C,Σ−1) ∝ fk
2

N (vec(Γ̃), D̃−1)I(Γ ∈ Ω), (32)

p(Σ−1|B,C,Γ) = fkW(ṽ, Ẽ−1), (33)

where vec(Γ̃) = D̃−1[(Σ−1 ⊗ (C ′C)) · vec(Γ) + D0 · vec(Γ0)], D̃ = Σ−1 ⊗ (C ′C) + D0,

Ẽ = SSE + E0, ṽ = T + v0 and SSE = (B − CΓ)′(B − CΓ). Since we employ natural

conjugate priors whose posterior has the same distributional family as the prior distribution,

we can solve the Bayesian VAR analytically.

The prior in the base case is specified as follows. We demean the variables in the VAR

and shrink the estimates towards the mean with the hyperparameter vec(Γ0) = 0k2 . For the

prior variance we set the scale matrix D0 for Σ with a scalar of 0.1 times the identity matrix

Ik2 . Through this scalar we can model the overall tightness of the prior covariance matrix.

The hyperparameter E0 is the identity matrix Ik.

Table 7 shows the variance decomposition over time inferred from the BVAR. Compared

to the VAR decomposition the results appear smoother especially in subsamples. No quali-

tative changes occur to the relative importance of CF versus DR news components. Different

though, are estimates for pipG showing zero percent CF components in all subsamples. The
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‘outlier’ in the period 1975-1987 does not emerge in the BVAR model suggesting a more

robust estimation due to shrinkage.

Why is discount rates news less important for local ratios in later samples? Predictability

patterns in subsamples using the BVAR approach are shown in Table 8. For the full sample

from 1985M1 to 2014M05 local and global components do both track a similar fraction of

future returns as suggested by the coefficients in column 1. Interestingly though, in the

periods from 2000 to 2014 only global components significantly predict future returns for

all three ratios. During 1987-2000 local dp ratios significantly predict returns whereas the

global component does not. Still, for pe and pip the global component is more pronounced

as emphasized by the magnitude of the coefficient and the t statistic. In the earlier period of

1975-1987 global and local dp ratios explain about the same fraction of future returns. For

pe and pip on the contrary, only the local component predicts future returns. Coefficients

from global components show even the wrong sign. Adjusted R2 is higher in later periods

for all specifications. Together, these findings suggest that predictability of future returns

shifted from the local component to the global one, which may explain the lack of DR news

as innovator in local ratios’ variance. It seems as due to financial market integration the

predictability pattern emerges as a global phenomena determined by market wide discount

rate innovations.

[Insert Table 7 near here]

[Insert Table 8 near here]

6. Robustness

In this section we provide additional robustness checks against common concerns. We

base the subsequent checks on the BVAR model.

6.1. Role of the United States

Many studies demonstrate the US as a pivotal factor in other countries’ predictability.

Prominently, Rapach et al. (2013) show that lagged US returns help predict future returns

in other countries. Our approach is more general as we try to capture the global influence

on expected returns. Although the US is a major driver of global financial and economic

shifts we test whether our results are sensible to the inclusion of US ratios and returns.
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Table 9 shows the BVAR variance decomposition excluding the US. Compared to the

variance decomposition including US the results are remarkably stable. No major changes in

the decomposition can be found. Only local dp ratio percentages change by 5% in the whole

sample. Other numbers do not change by more than 2%. This suggests that the evidence

is not a pivotal phenomena associated with the leading role of the US. It is truly a global

phenomenon.

[Insert Table 9 near here]

6.2. Anglo-Saxon countries

Are Anglo-Saxon countries different? One might argue that due to their relatively more

pronounced market based financial systems stock index returns behave different. In fact, the

equity premium is considered to be larger compared to other developed countries (see e.g.

Ang and Bekaert (2007)). Inspired by McMillan (2016) we extract principal components

of returns and country specific ratios. Table 10 shows results for the principal component

analysis. Evidently, the first principal component captures 59% of the return dispersion.

Interestingly, this component is positive in all countries. We interpret this as further evidence

for the importance of a global factor in returns. The second component is negative for all but

Canada, Japan, UK and US. There might be fundamental differences between Anglo-Saxon

countries (and Japan) and the rest of the sample. For ratios, the first component is positive

for all countries as well with the exception of pip for Ireland. Again, a global component in

ratios seems plausible based on this result.

Given these differences we employ the previous variance decomposition excluding Canada,

Japan, UK and US separately. Table 11 summarizes the results. Similar to the exclusion of

US only, the results are remarkably robust. Numbers for DR and CF news change at the

maximum by 6% with no clear additional pattern suggesting the overall results are truly

general for the countries in the sample.

[Insert Table 10 near here]

[Insert Table 11 near here]

6.3. Role of detrending pip

One critical issue in the construction of the pip ratio stems from the detrending method.

The previous results are based on detrending pip linearly, which is, in our view, the least
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problematic approach. Still, it is also common to detrend variables non-linear.

Table 12 shows predictive regressions for price to industrial production ratios using differ-

ent detrending methods. While the local ratio is not affected by the detrending method the

global one changes dramatically. The magnitude for the coefficient for pipG rises by a factor

of 4 and a factor of 12 by including a quadratic term and using the HP filter respectively.

R2 rises from 0.25% to 1.86%. This comes as a surprise. For instance, Cooper and Priestley

(2013) highlight differences in predictability arising from detrending methods of a output

gap measure, though the differences are not as pronounced as our findings. Table 13 shows

correlations between predictor variables and the world business cycle. While local ratios

show very little correlation with the world business cycle (ipcycle) global ratios do. The more

sophisticated the detrending procedure the higher the correlation with the business cycle.

pipG detrended with the Hodrick-Prescott filter has the highest correlation with the business

cycle of 0.451. Somehow, the predictability is higher for ratios that are closer tied to the

world business cycle. Intuitively, this seems plausible since global DR news is tied to global

risk perceptions.

[Insert Table 12 near here]

[Insert Table 13 near here]

6.4. Simulated data

We test the above models using simulated price to fundamental ratios. Trough such

procedures we can counter concerns about data mining, spurious relationships and even

possible mechanical, tautological relationships particular from the VAR.

Since price to fundamentals ratios are generally highly persistent we model artificial ones

following an Ornstein-Uhlenbeck process as the data generating process,

dXt = θ(µ−Xt) dt+ σ dWt, (34)

where θ > 0 denotes the rate by which shocks dissipate, µ is the equilibrium mean, σ > 0

the volatility parameter and dWt is the increment of a Wiener process. The process is mean

reverting and converges to a stationary distribution. We simply match the moments of this

process with our empirical estimates of pe ratios.

Replacing our sample with simulated ratios for 11 artificial countries and one global

simulated ratio yields the following (unreported) results. Point estimates, as expected, show

17



no significant pattern neither in the univariate regression nor in the VAR system. Variance

decompositions of (orthogonalized) simulated ratios show no mechanical connection to DR or

CF news, covariances of residuals are virtually zero. The reverse orthogonalization (regress

global ratios on local ones) yields some differences in results. Comparing orthogonalized

local ratios with non-orthogonalized, country specific ratios, yields a difference of 25% in the

variance decomposition of DR and CF news over the whole sample. Where for orthogonalized

ratios CF news dominates, for non-orthogonalized ratios, DR news is slightly higher. This

should not come as a surprise though. Trough orthogonalization we diminish the global

effect that in turn is closely tied to DR news.

7. Conclusion

We find that both local and global price to fundamental factors track a fraction of ex-

pected returns. Local ratios fluctuate due to CF and DR news while the latter is less

pronounced in later time periods. Global ratios fluctuate almost exclusively due to DR

news. We find that the more a predictor variable fluctuates due to DR news the better

the predictability of returns. The lack of local ratios’ predictability particularly in the post

2000’s era can be associated with global ratios tracking a larger fraction of expected returns

variation. It seems as a global discount factor is emerging due to rising financial integration

of markets. This seems plausible given the correlation of global factors to the world business

cycle. Our approach may explain the discrepancy of predictability both from a time-series

instability perspective due to regime switching and integration and from a cross-sectional

perspective due to ambiguous return/dividend growth predictability internationally.
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Table 1: Correlation matrix
This table shows correlation coefficients for variables. Subscripts L and G denote local and global ratios.
∆ is the difference operator.

Correlation r dpG dpL peG peL pipG pipL ∆d ∆e ∆ip ∆dG ∆eG ∆ipG

r 1
dpG 0.035 1
dpL 0.019 0.061 1
peG -0.019 -0.955 -0.045 1
peL -0.026 -0.066 -0.792 0.062 1
pipG -0.031 -0.775 0.007 0.829 -0.024 1
pipL -0.039 0.028 -0.098 -0.036 0.223 0.000 1
∆d 0.920 0.047 0.038 -0.022 -0.023 -0.040 -0.051 1
∆e 0.204 -0.041 -0.045 0.032 0.088 0.023 0.010 0.031 1
∆ip 0.026 -0.035 -0.011 0.047 0.017 0.040 0.008 0.043 0.023 1
∆dG 0.081 0.089 0.001 -0.057 0.012 0.003 0.013 0.112 -0.048 0.055 1
∆eG -0.002 0.110 0.036 -0.072 -0.029 -0.092 -0.035 0.014 -0.118 -0.081 -0.261 1
∆ipG 0.071 -0.166 -0.044 0.201 0.073 0.152 0.005 0.070 0.053 0.071 0.153 -0.149 1
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Table 2: Predictive regressions
This table shows one month ahead predictive regressions for combinations of global and (orthogonalized)
local predictor variables based on Eq.(17). t-statistics in parenthesis are based on PCSE SUR standard
errors.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

c 0.004 0.004 0.025 0.018 0.009 0.009 -0.078 -0.146
(2.167) (1.560) (4.434) (2.389) (10.527) (11.231) (-2.785) (-4.672)

dp 0.005
(3.114)

dpG 0.005 0.026 0.037
(2.224) (3.644) (4.958)

dpL 0.004 0.000 -0.001
(2.404) (0.119) (-0.329)

pe -0.006
(-2.964)

peG -0.003 0.043
(-1.282) 0.022 (4.840)

(2.880)
peL -0.007 -0.004

(-2.989) -0.007 (-1.136)
(-1.995)

pip -0.006
(-3.142)

pipG -0.006 -0.013
(-2.063) (-2.490)

pipL -0.007 -0.005
(-2.680) (-2.062)

Adj. R2 % 0.130 0.155 0.133 0.164 0.194 0.252 0.319 0.679
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Table 3: VAR Estimates for dp
This table shows VAR(1) point estimates for combinations of global and (orthogonalized) local predictor
and output variables based on Eq.(21).

r dpG dpL ∆d ∆dG

r 0.089 -0.157 1.129 0.159 0.490
-0.034 -0.017 -0.014 -0.065 -0.028

[ 2.659] [-9.293] [ 81.467] [ 2.460] [ 17.507]

dpG 0.007 0.995 0.004 0.018 0.026
-0.002 -0.001 -0.001 -0.004 -0.002

[ 3.249] [ 880.055] [ 4.653] [ 4.144] [ 13.857]

dpL 0.009 0.005 0.996 0.035 -0.005
-0.003 -0.002 -0.001 -0.006 -0.003

[ 3.003] [ 3.101] [ 801.599] [ 5.944] [-1.954]

∆d 0.001 -0.138 -0.887 0.019 -0.039
-0.017 -0.009 -0.007 -0.034 -0.014

[ 0.074] [-15.824] [-123.667] [ 0.578] [-2.703]

∆dG -0.001 -0.003 0.002 -0.009 0.192
-0.006 -0.003 -0.002 -0.011 -0.005

[-0.213] [-1.037] [ 1.036] [-0.880] [ 41.821]

Adj. R2 0.011 0.991 0.989 0.018 0.338

Table 4: Forecast error variance decomposition
This table shows variance decompositions for global and (orthogonalized) local predictor variables based
on Eqs. (22 - 24 including autocovariances.

Predictor DR CF local CF global cov global cov local st.err.

dpG 42.12 1.70 0.00 0.06 56.12 0.14
dpL 34.38 47.47 0.01 0.00 18.15 0.16

peG 32.20 2.51 1.13 0.10 64.07 0.15
peL 25.46 66.09 0.47 0.00 7.98 0.19

pipG 53.10 0.02 0.33 0.18 46.36 0.13
pipL 46.50 9.66 3.31 0.00 40.53 0.14
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Table 5: Variance decomposition over time
This table shows variance decompositions over time for global and (orthogonalized) local predictor
variables based on Eqs. (22 - 24.

75-14 75-87 87-00 00-14

DR CF DR CF DR CF DR CF
dpL 42% 58% 60% 40% 45% 55% 18% 82%
dpG 96% 4% 99% 1% 91% 9% 97% 3%

peL 28% 72% 35% 65% 32% 68% 15% 85%
peG 90% 10% 97% 3% 86% 14% 88% 12%

pipL 78% 22% 86% 14% 79% 22% 70% 30%
pipG 99% 1% 83% 17% 96% 4% 98% 2%

Table 6: Granger causality tests
This table shows Granger causality tests between local and global ratios.

Panel A: Pairwise Granger Causality Tests

H:0 dp pe pip

F-stat p-val F-stat p-val F-stat p-val
local does not cause global 0.702 0.496 8.414 0.000 0.561 0.571
global does not cause local 24.620 0.000 24.423 0.000 1.259 0.284

Panel B: Pairwise Dumitrescu and Hurlin (2012) Panel Causality Tests

H:0 dp pe pip

Zbar-stat p-val Zbar-stat p-val Zbar-stat p-val
local does not homog. cause global 0.823 0.411 3.923 0.000 1.000 0.318
global does not homog. cause local 8.450 0.000 10.470 0.000 2.244 0.025
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Table 7: Variance decomposition over time from BVAR
TRhis table shows variance decompositions over time from BVAR. Estimation based on Bayesian VAR
with Normal-inverse-Wishart prior (vec(Γ0) = 0k2 , D0 = 0.1 · Ik2).

75-14 75-87 87-00 00-14

DR CF DR CF DR CF DR CF
dpL 43% 57% 67% 33% 51% 49% 20% 80%
dpG 96% 4% 98% 2% 92% 8% 96% 4%

peL 28% 72% 36% 64% 33% 67% 15% 85%
peG 90% 10% 96% 4% 85% 15% 89% 11%

pipL 82% 18% 92% 8% 84% 16% 75% 25%
pipG 100% 0% 100% 0% 100% 0% 100% 0%

Table 8: BVAR predictions across time
This table shows point estimates from BVAR. Estimation based on Bayesian VAR with Normal-inverse-
Wishart prior (vec(Γ0) = 0k2 , D0 = 0.1 · Ik2).

75-14 75-87 87-00 00-14

Coef t-stat R2 Coef t-stat R2 Coef t-stat R2 Coef t-stat R2

dpL 0.009 [ 2.908]
0.011

0.016 [ 2.521]
0.007

0.015 [ 2.592]
0.008

0.002 [ 0.307]
0.028

dpG 0.007 [ 3.150] 0.011 [ 2.871] 0.004 [ 0.837] 0.022 [ 4.648]

peL -0.009 [-3.015]
0.013

-0.018 [-3.088]
0.013

-0.007 [-1.083]
0.012

0.003 [ 0.527]
0.025

peG -0.009 [-3.616] 0.008 [ 1.067] -0.045 [-3.709] -0.019 [-3.276]

pipL -0.008 [-3.023]
0.011

-0.009 [-1.742]
0.010

-0.015 [-2.718]
0.011

-0.004 [-0.940]
0.041

pipG -0.007 [-2.460] 0.026 [ 2.452] -0.049 [-3.317] -0.037 [-5.344]

Table 9: Variance decomposition over time from BVAR excluding US
This table shows variance decompositions over time excluding the US. Estimation based on Bayesian
VAR with Normal-inverse-Wishart prior (vec(Γ0) = 0k2 , D0 = 0.1 · Ik2).

75-14 75-87 87-00 00-14

DR CF DR CF DR CF DR CF
dpL 39% 61% 64% 36% 51% 49% 20% 80%
dpG 96% 4% 99% 1% 92% 8% 96% 4%

peL 26% 74% 35% 65% 33% 67% 14% 86%
peG 91% 9% 97% 3% 85% 15% 89% 11%

pipL 82% 18% 92% 8% 84% 16% 76% 24%
pipG 100% 0% 100% 0% 100% 0% 100% 0%
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Table 10: Principal Component Analysis
This table shows principle components for returns and country specific ratios.

PCA
r dp pe pip

Cross section PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3
Proportion [%] 59.0 7.8 5.1 62.6 13.6 6.9 57.7 13.6 6.8 63.4 12.1 6.7
Eigenvalue 8.88 1.18 0.77 9.39 2.04 1.04 8.66 2.03 1.02 9.51 1.82 1.01

Austria 0.235 -0.311 0.028 0.117 0.525 0.095 0.063 0.482 0.084 0.309 -0.001 0.032
Belgium 0.279 -0.263 -0.024 0.270 -0.117 -0.170 0.247 0.056 -0.161 0.322 -0.004 0.005
Canada 0.264 0.224 -0.321 0.301 -0.061 -0.070 0.289 -0.051 -0.067 0.311 -0.004 -0.023
Denmark 0.250 -0.175 -0.041 0.248 -0.010 -0.281 0.242 -0.198 -0.009 0.319 -0.007 -0.019
France 0.276 -0.185 -0.032 0.296 0.032 -0.075 0.310 -0.067 -0.026 0.322 -0.005 0.005
Germany 0.282 -0.252 0.037 0.285 0.237 -0.172 0.243 0.256 -0.384 0.322 -0.007 0.000
Ireland 0.263 -0.056 -0.074 0.262 -0.318 -0.123 0.300 -0.073 -0.038 -0.038 0.009 -0.743
Japan 0.186 0.017 0.823 0.215 0.449 -0.108 0.222 0.369 -0.135 0.286 0.002 0.009
Netherlands 0.307 -0.108 -0.042 0.303 -0.167 -0.142 0.322 -0.045 -0.028 0.322 -0.007 -0.006
UK 0.282 0.090 -0.063 0.294 -0.231 0.022 0.307 0.075 -0.007 0.322 -0.011 -0.011
US 0.271 0.191 -0.288 0.280 -0.259 -0.079 0.318 -0.164 0.049 0.320 -0.006 -0.010

Table 11: Variance decomposition over time from BVAR excluding Canada, Japan, UK,US
This table shows variance decompositions over time excluding Canada, Japan, UK and the US. Esti-
mation based on Bayesian VAR with Normal-inverse-Wishart prior (vec(Γ0) = 0k2 , D0 = 0.1 · Ik2).

75-14 75-87 87-00 00-14

DR CF DR CF DR CF DR CF
dpL 40% 60% 66% 34% 52% 48% 21% 79%
dpG 97% 3% 99% 1% 92% 8% 97% 3%

peL 26% 74% 36% 64% 34% 66% 13% 87%
peG 92% 8% 97% 3% 83% 17% 91% 9%

pipL 82% 18% 92% 8% 79% 21% 78% 22%
pipG 100% 0% 100% 0% 99% 1% 100% 0%
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Table 12: Detrending methods and predictive regressions
This table shows one month ahead predictive regressions using different detrending methods for the
pip ratio. Estimation following Eq.(17). t-statistics in parenthesis are based on PCSE SUR standard
errors.

(i) (ii) (iii)

c 0.009 0.009 0.009
(11.236) (11.226) (11.301)

pipL -0.007 -0.007 -0.006
(-2.814) (-2.794) (-2.496)

pip
(t)
G -0.006

(-2.265)

pip
(t+t2)
G -0.025

(-5.010)

pip
(HP )
G -0.073

(-9.497)

Adj.R2[%] 0.25 0.63 1.86

Table 13: Correlation with business cycle
This table shows the correlation matrix for predictor variables and the global business cycle ipcycle.

ipcycle piptrendG piptrend
2

G pipHPG pipL dpG dpL peG peL

ipcycle 1
piptrendG 0.251 1

piptrend
2

G 0.381 0.588 1
pipHPG 0.451 0.479 0.819 1
pipL 0.071 0.000 0.028 0.035 1
dpG -0.195 -0.774 -0.471 -0.376 0.028 1
dpL -0.059 0.008 -0.008 -0.019 -0.096 0.061 1
peG 0.081 0.828 0.454 0.315 -0.036 -0.955 -0.045 1
peL 0.012 -0.025 0.009 0.035 0.223 -0.066 -0.792 0.062 1
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Fig. 1. Impulse response functions - Cholesky factorization

This figure shows impulse response functions for one standard deviation impulses. Cholesky factorization
(combined graph).
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